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ABSTRACT 
 

Data mining (DM) is the process of exploration and analysis, by automatic or semiautomatic means, of large 

quantities of data in order to discover meaningful patterns and rules.One  of  the  important  problems  in  data  

mining  is  discovering  association  rules  from  databases  of  transactions  where  each  transaction  consists  of  a  

set  of  items.  Frequent  itemsets  play  an  important  role  in  many  data  mining  tasks.    The  task of  finding the  

frequent  itemsets  is  a  fundamental  problem  in  data  mining.  In  this  paper  we  examine  the  problem  of  

finding  frequent  itemsets  using Hyper-structure mining of frequent patterns in large  databases (H-Mine)  

algorithm  on  Mushroom  Dataset. The performance of the algorithm is evaluated with respect to execution time 

and frequent pattern generation.  The  Mushroom  dataset  contains  characteristics  of  various  species  of  

mushrooms,  and  was  originally  obtained  from  the  UCI  Repository  of  Machine  Learning  Databases.  H-Mine 

is one of the efficient algorithm  for  mining  frequent  itemsets  in  a  set  of  transactions. H-mine uses the 

advantage of the H-struct data structure and dynamically adjusts links in the mining process. A distinct feature of 

this method is that it has very limited and precisely predictable space overhead and runs really fast in memory-based 

setting. . In this paper we describe the implementation of this algorithm with respect to both execution time and 

frequent pattern generation. 
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I. INTRODUCTION 

 

Data mining refers to extracting or mining knowledge 

from large amounts of data [3]. Discovery of interesting 

association relationships among huge amounts of data 

will help marketing, decision making and business 

management [4]. The goal of the technique is to detect 

relationships or associations between specific values of 

categorical variables in large data sets. These powerful 

exploratory techniques have a wide range of applications 

in many areas of business practice and also research - 

from the analysis of consumer preferences or human 

resource management, to the history of language. These 

techniques enable analysts and researchers to uncover 

hidden patterns in large data sets.  

 

Association rule mining is a twostep process.  In the first 

step, all frequent itemises that occur at least as 

frequently as a predetermined minimum support count 

are found. In the second step, strong association rules 

that must satisfy minimum support and minimum 

confidence, from the frequent itemsets are generated. 

The overall performance of mining association rule is 

determined by the first step [3]. Therefore, efficient 

discovery of frequent patterns from large databases is 

the fundamental problem in data mining.  In this paper 

we examine the problem of finding frequent itemset on 

mushroom dataset using H-mine algorithm [1].  The 

mushroom dataset contains characteristics of various 

species of mushrooms, and was originally obtained from 

the UCI Repository of Machine Learning Databases. [2] 

 

 

II. METHODS AND MATERIAL 
.  

2. Problem statement 

 

2.1 Basic concepts 
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The association mining task can be stated as follows:  

 

Let I be a set of items and D be a database of 

transactions, where each transaction has a tid and 

contains a set of items. A set of items is also called an 

itemset. An itemset with k items is called a k-itemset. 

The support of an itemset X, denoted as σ(X) is the 

number of transactions in which it occurs as a subset. 

The input data (D) for most ARM algorithms comprises 

N columns describing a binary valued set of attributes A, 

and M transactions such that each transaction describes 

some subset of A. The k length subset of an itemset is 

called a k-subset. An itemset is maximal if it is not a 

subset of any other itemset. An itemset is frequent if its 

support is more than a user-specified minimum support 

(min_sup) value. The set of frequent k-itemsets is 

denoted as Fk. If the support of an item set is greater 

than a given support threshold, “min_sup”, the itemset is 

said to be large or frequent [4]. 

 

The data mining task is to generate all association rules 

in the database, which have a support value greater than 

min_sup. These association rules are frequent. This task 

can be broken into two steps:  

 

 Find all frequent itemsets. Given m items, there 

can be potentially 2m frequent itemsets. Efficient 

methods are needed to traverse this exponential 

itemset search space to enumerate all the frequent 

itemsets.  

 Generate confident rules. This step is relatively 

straightforward to generate association rules of the 

form X - > Y, for all frequent itemsets X and Y. 

[8] 

 

3. H-MINE: Hyper-Structure Mining  

 

H-mine takes advantage of the data structure H-Struct 

and dynamically adjusts links in the mining process. A 

distinct feature of this method is that it has very limited 

and precisely predictable space overhead and runs really 

fast in memory-based setting. Moreover, it can be scaled 

up to very large databases by database partitioning, and 

when the data set becomes dense, (conditional) FP-trees 

can be constructed dynamically as part of the mining 

process. H-mine has high performance in various kinds 

of data, and is highly scalable in mining large databases. 

[1] 

 

3.1 General Idea of H-Mine  

 

Let Table 1 be the transaction database TDB. Let the 

minimum support threshold be min sup = 2. The 

frequent item projection contains items which are 

frequent, which have a support value greater than 

min_sup. 

 

Transaction Items 

Frequent 

item 

Projection 

100 c,d,e,f,g,i c,d,e,g 

200 a,c,d,e,m a,c,d,e 

300 a,b,d,e,g,k a,d,e,g 

400 a,c,d,h a,c,d 

 

Table 1. The transaction database TDB used 

 

Following the Apriori property [5], only frequent items 

play roles in frequent patterns. By scanning TDB once, 

the complete set of frequent items {a : 3, c : 3, d : 4, e : 3, 

g : 2} can be found and output, where the notation a : 3 

means item a’s support (occurrence frequency) is three. 

Let freq (X) (the frequent-item projection of X) be the set 

of frequent items in itemset X. Following the 

alphabetical order of frequent items1 (called an F-list) a-

c-d-e-g, the complete set of frequent patterns can be 

partitioned into five subsets as follows: 

 

(i) those containing item a;  

(ii) those containing item c but not item a; 

(iii) those containing item d but no item a nor item c; 

(iv) those containing item e but no item a nor item c 

nor item d; and  

(v)  those containing only item g, as shown in 

Figure 1 
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Figure 1. Divide and Conquer Frequent Patterns 

 

If the frequent-item projections of transactions in the 

database can be held in the main memory, then they can 

be organized as shown in Figure. 2. All items in 

frequent-item projections are sorted according to the F-

list. For example, the frequent-item projection of 

transaction 100 is listed as cdeg. Every occurrence of a 

frequent item is stored in an entry with two fields: an 

item-id and a hyper-link. A header table H is created, 

with each frequent item entry having three fields: an 

item-id, a support count, and a hyperlink. When the 

frequent-item projections are loaded into the memory, 

those with the same first item (in the order of the F-list) 

are linked together by the hyper-links into a queue, and 

the entries in header table H act as the heads of the 

queues.  

 
Figure 2. H-struct, the hyper-structure to store frequent-

items  projections. 

 

Clearly, it takes one scan (the second scan) of the 

transaction database TDB to build such a memory 

structure (called the H-struct).  

 

Then the remaining mining is performed on the H-struct 

only, without referencing any information in the original 

database. After that, the five subsets of frequent patterns 

can be mined one by one. To find the set of frequent 

patterns in the first subset, i.e., all the frequent patterns 

containing item a. This requires to search all the 

frequent item projections containing item a, i.e., the a-

projected database, denoted as TDB|a. The frequent item 

projections in the a-projected database are linked in the 

a-queue, which can be traversed efficiently. 

 

 
 

Figure 3. Header table Ha and the ac-queue 

 

To mine the a-projected database, an a-header table Ha 

is created, as shown in Figure. 3. In Ha, every frequent 

item, except for a itself, has an entry with the same three 

fields as H, i.e., item-id, support count and hyper-link. 

The support count in Ha records the support of the 

corresponding item in the a-projected database. By 

traversing the a-queue once, the set of locally frequent 

items, i.e., the items appearing at least two times, in the 

a-projected database is found, which is {c : 2, d : 3, e : 2} 

This scan gives the frequent patterns {ac : 2,  ad : 3, ae : 

2} as output and builds up links for the Ha header as 

shown in Figure 3. 
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Similarly, the process continues for the ac-projected 

database by examining the c-queue in Ha, which creates 

an ac-header table Hac, as shown in Figure 4. 

 

 
Figure 4. Header Table Hac 

 

Since only item d : 2 is a locally frequent item in the ac 

projected database, only acd : 2 will be the output, and 

the search along this path completes. Then the recursion 

backtracks to find patterns containing a and d but not c. 

Since the queue started from d in the header table Ha, 

i.e., the ad-queue, links all frequent item projections 

containing items a and d (but excluding item c in the 

projection), one can get the complete ad projected 

database by inserting frequent-item projections having 

item d in the ac-queue into the ad-queue. This involves 

one more traversal of the ac-queue. Each frequent item 

projection in the ac-queue is appended to the queue of 

the next frequent item in the projection according to F-

list. Since all the frequent-item projections in the ac-

queue have item d, they are all inserted into the ad-

queue, as shown in Figure 5. After the adjustment, the 

ad-queue collects the complete set of frequent-item 

projections containing items a and d.  

 

 
Figure 5. Header table Ha and the ad-queue. 

 

Thus, the set of frequent patterns containing items a and 

d can be mined recursively. Even though item c appears 

in frequent-item projections of the ad-projected database, 

it is not considered as a local frequent item in any 

recursive projected database since it has been considered 

in the mining of the ac-queue. This mining generates 

only one pattern ade : 2. For the search in the ae-

projected database, since e contains no child links, the 

search terminates, with no patterns being generated. 

After the frequent patterns containing item a are found, 

the a-projected database, i.e., a-queue, is no longer 

needed for the remaining mining processes. Since the c-

queue includes all frequent-item projections containing 

item c except for those projections containing both items 

a and c, which are in the a-queue. 

 

To mine all the frequent patterns containing item c but 

not a, and other subsets of frequent patterns, we need to 

insert all the projections in the a-queue into the proper 

queues. The a-queue is traversed one more time. Each 

frequent-item projection in the queue is appended to the 

queue of the next item in the projection following a in 

the F-list, as shown in Figure.6.  

 

 
Figure 6. Adjusted hyper-links after mining the a-

projected database 

 

The efficiency of H-mine comes from the following 

aspects. 

 

 H-mine avoids candidate generation and test by 

adopting a frequent-pattern growth methodology. H-

mine absorbs the advantages of pattern growth. 

 H-mine confines its search in a dedicated space. 

Unlike other frequent pattern growth methods, it 

does not need to physically construct memory 

structures of projected databases. It fully utilizes the 
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information well organized in the H-struct, and 

collects information about projected databases using 

header tables, which are light-weight structures. 

That also saves a lot of efforts on managing space. 

 H-mine does not need to store any frequent patterns 

in memory. Once a frequent pattern is found, it is 

output to disk. [1] 

 

3.2 Partitioning in H-mine: 

 

H-mine mines frequent-patterns in large data sets that 

cannot fit in main memory. H-mine is efficient when the 

frequent-item projections of a transaction database plus 

a set of header tables can fit in main memory. When 

they cannot fit in memory, a database partitioning 

technique can be developed as follows. 

 

Let TDB be the transaction database with n transactions 

and min_sup be the support threshold. By scanning TDB 

once, one can find L, the set of frequent items. Then, 

TDB can be partitioned into k parts, TDB1, . . . , TDBk, 

such that, for each TDBi (1 ≤ i ≤ k), the frequent-item 

projections of transactions in TDBi can be held in main 

memory, where TDBi has ni transactions, and Σ 
k

i=1 ni = 

n. We can apply H-mine to TDBi to find frequent 

patterns in TDBi with the minimum support threshold 

min_ supi = [min sup × ni/n]. 

 

Let Fi (1 ≤ i ≤ k) be the set of (locally) frequent patterns 

in TDBi. P cannot be a (globally) frequent pattern in 

TDB with respect to the support threshold min sup if 

there exists no i (1 ≤ i ≤ k) such that P is in Fi. Therefore, 

after mining frequent patterns in the TDBi, we can 

gather the patterns in Fi and collect their (global) 

support in TDB by scanning the transaction database 

TDB one more time. Thus we can extend H-mine to 

handle datasets whose frequent patterns cannot be held 

in main memory. [1] 

 

III. RESULTS AND DISCUSSION 
 

EXPERIMENTAL ANALYSIS 

 

In this section, we describe the experimental results of 

H-Mine algorithm for generating frequent patterns.  

 

DATASET DESCRIPTION: 

 

 Title                    :    Mushroom   Database 

 No of instances   :     8124 

 No of attributes   :     22 (all nominally valued) 

 

Attribute information: 

 

(classes: edible=e, poisonous=p) cap_shape, cap-surface, 

cap color, bruishes, odor, gill-attachment, gill-spacing, 

gill-size, gill-color, stalk-shape, stalk, root, stalk 

_surface _along ring, stalk color_above_ring, 

stalk_color_ below ring, veil type, veil color, 

ring_number, ring_type spore_print_colour, population, 

habitat. 

 

Class distribution: 

 

Edible       :      4208(51.8%) 

Poisonous:      3916(48.2%) 

 

The main advantage of the H-Mine algorithm is that it 

provides the flexibility by avoiding candidate generation 

and test by adopting a frequent-pattern growth 

methodology. H-mine absorbs the advantages of pattern 

growth. Algorithms were coded in JAVA. The algorithm 

was tested for its efficiency in finding the frequent 

patterns. It was tested for different values of minimum 

support. The sample output result screens are shown in 

figure 7 and figure 8.The frequent pattern generation and 

the execution time graphs are shown in figure 9 and 

figure 10. 

 

 
 

Figure 7. Frequent itemsets Generation 
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Figure 8. Execution time for generation of different 

frequent itemsets 

 

 
 

Figure 9. Frequent itemsets Generation 

 

 
 

Figure 10. Execution time for generation of different 

frequent itemsets 

 

IV. CONCLUSION 

 
The overall performance of mining association rule is 

determined by finding all frequent itemsets.  From the 

experiment which we have conducted we were able to 

find frequent itemsets from the mushroom dataset 

depending upon support values which were given as 

input by the user. Our experimental results show that the 

performance of the algorithm is determined by finding 

all frequent itemsets and is influenced by various 

support factors. The results show that the algorithm 

takes advantage of the H-struct data structure and 

dynamically adjusts links in the mining process.  
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