
IJSRSET1622231 | Received : 03 March 2016 | Accepted : 09 April 2016 | March-April 2016 [(2)2: 694-697]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

694

Using Hyper-structure mining to Ascertain Recurrent
Patterns in Large Dataset

R. D. Priyanka, Dr. R. Sabitha, T. Mythili

Department of Information Technology, Info Institute of Engineering, Kovilpalayam, Coimbatore, Tamilnadu, India

ABSTRACT

Data mining (DM) is the process of exploration and analysis, by automatic or semiautomatic means, of large

quantities of data in order to discover meaningful patterns and rules.One of the important problems in data

mining is discovering association rules from databases of transactions where each transaction consists of a

set of items. Frequent itemsets play an important role in many data mining tasks. The task of finding the

frequent itemsets is a fundamental problem in data mining. In this paper we examine the problem of

finding frequent itemsets using Hyper-structure mining of frequent patterns in large databases (H-Mine)

algorithm on Mushroom Dataset. The performance of the algorithm is evaluated with respect to execution time

and frequent pattern generation. The Mushroom dataset contains characteristics of various species of

mushrooms, and was originally obtained from the UCI Repository of Machine Learning Databases. H-Mine

is one of the efficient algorithm for mining frequent itemsets in a set of transactions. H-mine uses the

advantage of the H-struct data structure and dynamically adjusts links in the mining process. A distinct feature of

this method is that it has very limited and precisely predictable space overhead and runs really fast in memory-based

setting. . In this paper we describe the implementation of this algorithm with respect to both execution time and

frequent pattern generation.

Keywords : Data Mining, Association Rule Mining, Frequent Itemsets, H-mine

I. INTRODUCTION

Data mining refers to extracting or mining knowledge

from large amounts of data [3]. Discovery of interesting

association relationships among huge amounts of data

will help marketing, decision making and business

management [4]. The goal of the technique is to detect

relationships or associations between specific values of

categorical variables in large data sets. These powerful

exploratory techniques have a wide range of applications

in many areas of business practice and also research -

from the analysis of consumer preferences or human

resource management, to the history of language. These

techniques enable analysts and researchers to uncover

hidden patterns in large data sets.

Association rule mining is a twostep process. In the first

step, all frequent itemises that occur at least as

frequently as a predetermined minimum support count

are found. In the second step, strong association rules

that must satisfy minimum support and minimum

confidence, from the frequent itemsets are generated.

The overall performance of mining association rule is

determined by the first step [3]. Therefore, efficient

discovery of frequent patterns from large databases is

the fundamental problem in data mining. In this paper

we examine the problem of finding frequent itemset on

mushroom dataset using H-mine algorithm [1]. The

mushroom dataset contains characteristics of various

species of mushrooms, and was originally obtained from

the UCI Repository of Machine Learning Databases. [2]

II. METHODS AND MATERIAL
.

2. Problem statement

2.1 Basic concepts

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

20

The association mining task can be stated as follows:

Let I be a set of items and D be a database of

transactions, where each transaction has a tid and

contains a set of items. A set of items is also called an

itemset. An itemset with k items is called a k-itemset.

The support of an itemset X, denoted as σ(X) is the

number of transactions in which it occurs as a subset.

The input data (D) for most ARM algorithms comprises

N columns describing a binary valued set of attributes A,

and M transactions such that each transaction describes

some subset of A. The k length subset of an itemset is

called a k-subset. An itemset is maximal if it is not a

subset of any other itemset. An itemset is frequent if its

support is more than a user-specified minimum support

(min_sup) value. The set of frequent k-itemsets is

denoted as Fk. If the support of an item set is greater

than a given support threshold, “min_sup”, the itemset is

said to be large or frequent [4].

The data mining task is to generate all association rules

in the database, which have a support value greater than

min_sup. These association rules are frequent. This task

can be broken into two steps:

 Find all frequent itemsets. Given m items, there

can be potentially 2m frequent itemsets. Efficient

methods are needed to traverse this exponential

itemset search space to enumerate all the frequent

itemsets.

 Generate confident rules. This step is relatively

straightforward to generate association rules of the

form X - > Y, for all frequent itemsets X and Y.

[8]

3. H-MINE: Hyper-Structure Mining

H-mine takes advantage of the data structure H-Struct

and dynamically adjusts links in the mining process. A

distinct feature of this method is that it has very limited

and precisely predictable space overhead and runs really

fast in memory-based setting. Moreover, it can be scaled

up to very large databases by database partitioning, and

when the data set becomes dense, (conditional) FP-trees

can be constructed dynamically as part of the mining

process. H-mine has high performance in various kinds

of data, and is highly scalable in mining large databases.

[1]

3.1 General Idea of H-Mine

Let Table 1 be the transaction database TDB. Let the

minimum support threshold be min sup = 2. The

frequent item projection contains items which are

frequent, which have a support value greater than

min_sup.

Transaction Items

Frequent

item

Projection

100 c,d,e,f,g,i c,d,e,g

200 a,c,d,e,m a,c,d,e

300 a,b,d,e,g,k a,d,e,g

400 a,c,d,h a,c,d

Table 1. The transaction database TDB used

Following the Apriori property [5], only frequent items

play roles in frequent patterns. By scanning TDB once,

the complete set of frequent items {a : 3, c : 3, d : 4, e : 3,

g : 2} can be found and output, where the notation a : 3

means item a’s support (occurrence frequency) is three.

Let freq (X) (the frequent-item projection of X) be the set

of frequent items in itemset X. Following the

alphabetical order of frequent items1 (called an F-list) a-

c-d-e-g, the complete set of frequent patterns can be

partitioned into five subsets as follows:

(i) those containing item a;

(ii) those containing item c but not item a;

(iii) those containing item d but no item a nor item c;

(iv) those containing item e but no item a nor item c

nor item d; and

(v) those containing only item g, as shown in

Figure 1

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

19

Figure 1. Divide and Conquer Frequent Patterns

If the frequent-item projections of transactions in the

database can be held in the main memory, then they can

be organized as shown in Figure. 2. All items in

frequent-item projections are sorted according to the F-

list. For example, the frequent-item projection of

transaction 100 is listed as cdeg. Every occurrence of a

frequent item is stored in an entry with two fields: an

item-id and a hyper-link. A header table H is created,

with each frequent item entry having three fields: an

item-id, a support count, and a hyperlink. When the

frequent-item projections are loaded into the memory,

those with the same first item (in the order of the F-list)

are linked together by the hyper-links into a queue, and

the entries in header table H act as the heads of the

queues.

Figure 2. H-struct, the hyper-structure to store frequent-

items projections.

Clearly, it takes one scan (the second scan) of the

transaction database TDB to build such a memory

structure (called the H-struct).

Then the remaining mining is performed on the H-struct

only, without referencing any information in the original

database. After that, the five subsets of frequent patterns

can be mined one by one. To find the set of frequent

patterns in the first subset, i.e., all the frequent patterns

containing item a. This requires to search all the

frequent item projections containing item a, i.e., the a-

projected database, denoted as TDB|a. The frequent item

projections in the a-projected database are linked in the

a-queue, which can be traversed efficiently.

Figure 3. Header table Ha and the ac-queue

To mine the a-projected database, an a-header table Ha

is created, as shown in Figure. 3. In Ha, every frequent

item, except for a itself, has an entry with the same three

fields as H, i.e., item-id, support count and hyper-link.

The support count in Ha records the support of the

corresponding item in the a-projected database. By

traversing the a-queue once, the set of locally frequent

items, i.e., the items appearing at least two times, in the

a-projected database is found, which is {c : 2, d : 3, e : 2}

This scan gives the frequent patterns {ac : 2, ad : 3, ae :

2} as output and builds up links for the Ha header as

shown in Figure 3.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

695

Similarly, the process continues for the ac-projected

database by examining the c-queue in Ha, which creates

an ac-header table Hac, as shown in Figure 4.

Figure 4. Header Table Hac

Since only item d : 2 is a locally frequent item in the ac

projected database, only acd : 2 will be the output, and

the search along this path completes. Then the recursion

backtracks to find patterns containing a and d but not c.

Since the queue started from d in the header table Ha,

i.e., the ad-queue, links all frequent item projections

containing items a and d (but excluding item c in the

projection), one can get the complete ad projected

database by inserting frequent-item projections having

item d in the ac-queue into the ad-queue. This involves

one more traversal of the ac-queue. Each frequent item

projection in the ac-queue is appended to the queue of

the next frequent item in the projection according to F-

list. Since all the frequent-item projections in the ac-

queue have item d, they are all inserted into the ad-

queue, as shown in Figure 5. After the adjustment, the

ad-queue collects the complete set of frequent-item

projections containing items a and d.

Figure 5. Header table Ha and the ad-queue.

Thus, the set of frequent patterns containing items a and

d can be mined recursively. Even though item c appears

in frequent-item projections of the ad-projected database,

it is not considered as a local frequent item in any

recursive projected database since it has been considered

in the mining of the ac-queue. This mining generates

only one pattern ade : 2. For the search in the ae-

projected database, since e contains no child links, the

search terminates, with no patterns being generated.

After the frequent patterns containing item a are found,

the a-projected database, i.e., a-queue, is no longer

needed for the remaining mining processes. Since the c-

queue includes all frequent-item projections containing

item c except for those projections containing both items

a and c, which are in the a-queue.

To mine all the frequent patterns containing item c but

not a, and other subsets of frequent patterns, we need to

insert all the projections in the a-queue into the proper

queues. The a-queue is traversed one more time. Each

frequent-item projection in the queue is appended to the

queue of the next item in the projection following a in

the F-list, as shown in Figure.6.

Figure 6. Adjusted hyper-links after mining the a-

projected database

The efficiency of H-mine comes from the following

aspects.

 H-mine avoids candidate generation and test by

adopting a frequent-pattern growth methodology. H-

mine absorbs the advantages of pattern growth.

 H-mine confines its search in a dedicated space.

Unlike other frequent pattern growth methods, it

does not need to physically construct memory

structures of projected databases. It fully utilizes the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

696

information well organized in the H-struct, and

collects information about projected databases using

header tables, which are light-weight structures.

That also saves a lot of efforts on managing space.

 H-mine does not need to store any frequent patterns

in memory. Once a frequent pattern is found, it is

output to disk. [1]

3.2 Partitioning in H-mine:

H-mine mines frequent-patterns in large data sets that

cannot fit in main memory. H-mine is efficient when the

frequent-item projections of a transaction database plus

a set of header tables can fit in main memory. When

they cannot fit in memory, a database partitioning

technique can be developed as follows.

Let TDB be the transaction database with n transactions

and min_sup be the support threshold. By scanning TDB

once, one can find L, the set of frequent items. Then,

TDB can be partitioned into k parts, TDB1, . . . , TDBk,

such that, for each TDBi (1 ≤ i ≤ k), the frequent-item

projections of transactions in TDBi can be held in main

memory, where TDBi has ni transactions, and Σ
k

i=1 ni =

n. We can apply H-mine to TDBi to find frequent

patterns in TDBi with the minimum support threshold

min_ supi = [min sup × ni/n].

Let Fi (1 ≤ i ≤ k) be the set of (locally) frequent patterns

in TDBi. P cannot be a (globally) frequent pattern in

TDB with respect to the support threshold min sup if

there exists no i (1 ≤ i ≤ k) such that P is in Fi. Therefore,

after mining frequent patterns in the TDBi, we can

gather the patterns in Fi and collect their (global)

support in TDB by scanning the transaction database

TDB one more time. Thus we can extend H-mine to

handle datasets whose frequent patterns cannot be held

in main memory. [1]

III. RESULTS AND DISCUSSION

EXPERIMENTAL ANALYSIS

In this section, we describe the experimental results of

H-Mine algorithm for generating frequent patterns.

DATASET DESCRIPTION:

 Title : Mushroom Database

 No of instances : 8124

 No of attributes : 22 (all nominally valued)

Attribute information:

(classes: edible=e, poisonous=p) cap_shape, cap-surface,

cap color, bruishes, odor, gill-attachment, gill-spacing,

gill-size, gill-color, stalk-shape, stalk, root, stalk

_surface _along ring, stalk color_above_ring,

stalk_color_ below ring, veil type, veil color,

ring_number, ring_type spore_print_colour, population,

habitat.

Class distribution:

Edible : 4208(51.8%)

Poisonous: 3916(48.2%)

The main advantage of the H-Mine algorithm is that it

provides the flexibility by avoiding candidate generation

and test by adopting a frequent-pattern growth

methodology. H-mine absorbs the advantages of pattern

growth. Algorithms were coded in JAVA. The algorithm

was tested for its efficiency in finding the frequent

patterns. It was tested for different values of minimum

support. The sample output result screens are shown in

figure 7 and figure 8.The frequent pattern generation and

the execution time graphs are shown in figure 9 and

figure 10.

Figure 7. Frequent itemsets Generation

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

697

Figure 8. Execution time for generation of different

frequent itemsets

Figure 9. Frequent itemsets Generation

Figure 10. Execution time for generation of different

frequent itemsets

IV. CONCLUSION

The overall performance of mining association rule is

determined by finding all frequent itemsets. From the

experiment which we have conducted we were able to

find frequent itemsets from the mushroom dataset

depending upon support values which were given as

input by the user. Our experimental results show that the

performance of the algorithm is determined by finding

all frequent itemsets and is influenced by various

support factors. The results show that the algorithm

takes advantage of the H-struct data structure and

dynamically adjusts links in the mining process.

V. REFERENCES

[1] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D.

Yang. Hmine: Hyper-structure mining of frequent

patterns in large databases. In ICDM, pages 441--

448, 2001.

[2] UCI Repository of Machine Learning databases,

University of California, Irvine, Department of

Information and Computer

Science.http://www.ics.uci.ed/~mlearn/MLReposit

ory.html

[3] Jaiwei Han and Micheline Kamber, "Datamining:

Concepts and Techniques", Morg Kaufman

Publishers, 2001.

[4] R.Agrawal, T.Imielinski and A. Swami, "Mining

Association Rules between Sets of Items in Large

Databases", Proc.1993. ACM SIGMOD Int’l.

Conf. Management of Data, pp.207-216,

Washington, D.C., May, 1993.

[5] R.Agrawal and R.Srikant, "Fast Algorithms for

Mining Association Rules", In Proc.1994 Int’l.

Conf. Very Large Databases, pp.487-

499.Santiago, Chile, Sep, 1994.

[6] Jiawei, Han and Yongjian Fu," Discovery of

Multiple-level Association rules from Large

Databases". In Proc.1995, Int’l. Conf. Very Large

Databases, pp.420-431, Zurich, Switzerland, Sep,

1995.

[7] M. J. Zaki, "Scalable algorithms for association

mining", IEEE Transactions on Knowledge and

Data Engineering, 12(3):372-390, May-June 2000.

[8] Yanbo Wang – "Categorization of Association

Rule Mining Algorithms", In Proceedings of the

9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM

Press, 2003.

[9] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W.

Li, "New algorithms for fast discovery of

association rules", In 3rd Intl. Conf. on

Knowledge Discovery and Data Mining, August

1997.

[10] R. J. Bayardo, "Efficiently mining long patterns

from databases", In ACM SIGMOD Conf.

Management of Data, June 1998.

Hmine Implemetation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5 7 9 11 13 15 17 19 21

Itemset

T
Im

e
(m

ic
ro

 s
ec

s)

Hmine

Hmine Implementation

1.8

1.85

1.9

1.95

2

1 2 3 4 5 6

Min_Sup

T
im

e
 (

m
ic

ro
 s

e
c
s
)

Series1

